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Learning Objectives

e Understand TensorFlow as a data workflow system.
o Know the key components of TensorFlow.
o Understand the key concepts of distributed TensorFlow.
e Execute basic distributed tensorflow program.
e Establish a foundation to distribute deep learning models:
e Convolutional Neural Networks
e Recurrent Neural Network (or LSTM, GRU)
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What is TensorFlow?

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

A 2-d tensor is just a matrix.
1-d: vector
0-d: a constant / scalar

Note: Linguistic ambiguity:
Dimensions of a Tensor =/=
Dimensions of a Matrix

(i.stack.imgur.com)



What is TensorFlow?

A workflow system catered to numerical computation.
One view: Like Spark, but uses tensors instead of RDDs.
Examples > 2-d :

Image definitions in terms of RGB per pixel
Image[row][column][rgb]

Subject, Verb, Object representation of language:
Counts|[verb][subject][object]



What is TensorFlow?

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

Technically, less abstract than RDDs which could hold tensors as
well as many other data structures (dictionaries/HashMaps,
Trees, ...efc...).

Then, why TensorFlow?
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What is TensorFlow?

Efficient, high-level built-in linear algebra and machine
learning optimization operations.

enables complex models, like deep learning
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What is TensorFlow?

Efficient, high-level built-in linear algebra and machine
learning operations.

import tensorflow as tf

b = tf.Variable(tf.zeros([100])) # 100-d vector, init to zeroes
W = tf.Variable (tf.random_uniform([784,100],-1,1)) # 784x100 matrix w/rnd vals
x = tf.placeholder (name="x") # Placeholder for input
relu = tf.nn.relu(tf.matmul (W, x) + b) # Relu (Wx+b)
B =2 [uweal # Cost computed as a function
# of Relu
s = tf.Session()
for step in xrange (0, 10):
input = ...construct 100-D input array # Create 100-d vector for input
result = s.run(C, feed_dict={x: input}) # Fetch cost, feeding x=input

print step, result

(Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016). Tensorflow:
Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.)



TensorFlow

Operations on tensors are often conceptualized @
as graphs:
import tensorflow as tf
b = tf.Variable (tf.zeros([100])) RELU
W = tf.Variable (tf.random_uniform([784,100],-1,1))
X = tf.placeholder (name="x")

relu = tf.nn.relu(tf.matmul (W, x) + b) -

B & [uaeal
s = tf.Session|() m
for step in xrange (0, 10):

input = ...construct 100-D input array
result = s.run(C, feed_dict={x: input})
print step, result

(Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016). Tensorflow:
Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arX/v 1603 04467.)



TensorFlow

Operations on tensors are often conceptualized
as graphs:

A simpler example:
c = tensorflow.matmul(a, b) w



TensorFlow

Operations on tensors are often conceptualized

as graphs: .

example:

d=b+c
e=c+2
a=d*e

(Adventures in Machine Learning.
Python TensorFlow Tutorial, 2017)



Ingredients of a TensorFlow

tensors*

variables - persistent
mutable tensors

constants - constant

placeholders - from data

operations

an abstract computation
(e.g. matrix multiply, add)
executed by device kernels

* technically, still operations

session devices

defines the environment in the specific devices (cpus or
which operations run. gpus) on which to run the
(like a Spark context) session.




Ingredients of a TensorFlow

tensors*
variables - persistent o tf.Variable(initial _value, name)
mutable tensors o tf.constant(value, type, name)

constants - constant o tf.placeholder(type, shape, name)
placeholders - from data

* technically, still operations



Ingredients of a TensorFlow

operations
an abstract computation

(e.g. matrix multiply, add)
executed by device kernels

Category

Examples

Element-wise mathematical operations
Array operations

Matrix operations

Stateful operations

Neural-net building blocks
Checkpointing operations

Queue and synchronization operations
Control flow operations

Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal, ...
Concat, Slice, Split, Constant, Rank, Shape, Shuffle, ...
MatMul, MatrixInverse, MatrixDeterminant, ...
Variable, Assign, AssignAdd, ...

SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool, ...
Save, Restore

Enqueue, Dequeue, MutexAcquire, MutexRelease, ...
Merge, Switch, Enter, Leave, Nextlteration




Ingredients of a TensorFlow

e Places operations on devices
e Stores the values of variables (when not distributed)

e Carries out execution: eval() or run()

session
defines the environment in

which operations run.
(like a Spark context)




Ingredients of a TensorFlow

tensors*

variables - persistent
mutable tensors

constants - constant

placeholders - from data

session

defines the environment in
which operations run.

(like a Spark context)

operations

an abstract computation
(e.g. matrix multiply, add)
executed by device kernels

devices

the specific devices (cpus or
gpus) on which to run the
session.




Distributed TensorFlow
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Determine weights, 7%, of a function, f, such that € is minimized: AX|%)=7 +&
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Distributed TensorFlow

Typical use-case:
Determine weights, 7%, of a function, f, such that € is minimized: AX|%)=7 +&
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Distributed TensorFlow

. fXw) = ¥
Typical use-case: V= (XIW) + €

Determine weights, %, of a function, f, such that |€ | is minimized SIS

£E=y-Y




Distributed TensorFlow

Typical use-case:

Determine weights, 7, of a function,f, such that € is minimized:

Typically, very complex!

X7 Xg Xg Lfgiven W, W, W
X13 X14 }(15 v X

(typically, p >= m)"



Distributed TensorFlow

. FXIW) = ¥
Typical use-case: V- (XW) + €

Determine weights, %, of a function, f, such that € is minimized: V-V +g

7 determined through gradient descent:
back propagating error across the network that defines f.

XX, X X XX
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Distributed TensorFlow

Typical use-case:

Determine weights, 7, of a function,f, such that € is minimized:

7 determined through gradient descent:
back propagating error across the netwt at defines f.

minimizes € on N training examples




Weights Derived from Gradients

J(w) / __— Gradient
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Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:

N
3 = ar g'm.‘i'n.lcg{z (y? _ y*? )'2 }

matrix multiply

N
y; = X;3 Thus: B = a:rg-m.z"n.g{Z (yi — Xi8)*}
i=0
In standard linear equation:
SRR L1 117
y = mz + b let ' =ax 4+ |1,1,..., 1|y

then, y = ma’
(if we add a column of 1s, mx + b is just matmul(m, x))



Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:
N
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matrix multiply :
;

N
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Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:

N
3 = arg '77?.2"7‘2.5{ Z (yi — gz ) 7 }
i N
1=0

How to update?  Snew = Bprev — @ * grad



Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:

N
3 = ar g'mi'n.ld{z (y? _ g? )2 }

N
y; = X;8 Thus: B = argming{» (yi — X:8)*}
1=0

How to Update? ,."‘.:—))new — ..f}prez_r — (X * gl‘ad —————————————————————

(for gradient descent) “‘learning rate”




Weights Derived from Gradients

Ridge Regression (L2 Penalized linear regression, /\‘ ‘J’) “; )
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1. Matrix Solution:

B = (XTX + M) XTy




Weights Derived from Gradients

Ridge Regression (L2 Penalized linear regression, )\‘ \j| [%)

4 N
N m

gridge =(n‘gm.'z'.'n,5{E (yi — E Ti;3;)° + A E 3 1
i=1 7=1

2. Gradient descent solution

(Mirrors many parameter optimization problems.)
\. J

1. Matrix Solution:

B = (XTX + M) XTy




Weights Derived from Gradients

Ridge Regression (L2 Penalized linear regression, /\‘ \j| \%)

( )

I

N
‘A' I " . 2 ; 2
grid =(ugmz.n.,j-{]5 (yi — E Ti;3;)° + A E 351
i=1

7=1

Gradient descent needs to solve.

(Mirrors many parameter optimization problems.
. J

TensorFlow has built-in ability to derive gradients given a|cost function




Weights Derived from Gradients

Ridge Regression (L2 Penalized linear regression, )\‘ \j| [%)
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N
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Gradient descent needs to solve.

(Mirrors many parameter optimization problems.
. J

TensorFlow has built-in ability to derive gradients given a|cost function

tf.gradients(cost, [params])



Weights Derived from Gradients

Paregeters Periodic |
O - - ) checkpoint
Read params Apply grads
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] > ))))) Dist. FS
Preprocessing Training

TensorFlow has built-in ability to derive gradients given a cost function.

tf.gradients(cost, [params])



Options for distribution
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a. Train over all with different hyperparameters
b. Train different folds per worker node.
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Options for distribution

1. Distribute copies of entire dataset
a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters
i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal
3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.
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talked about much because it's
1. Distribute copies of entire dataset - mostly as easy as it sounds.

a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories
2. Distribute data Preferred method for big data or
a. Each node finds parameters foméla\ very complex models (i.e.
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i. Distributed All-Reduce parameters).

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal
3. Distribute model or individual operations (e.g. matrix multiply)

Pro: PaiMlodel Parellelism:d  Con: High communication for transferring
Intermediar data.



Model Parallelism

Multiple devices on multiple machines

with tf.device(“/cpu:1”)

i with tf.device(*“/gpu:0”)
: beta=tf.Variable(...)

i y pred=tf.matmul(beta,X)




Data Parallelism

beta=tf.Variable(...) i

: I
beta=tf.Variable(...) i i
: ' pred=tf.matmul(beta,X)

pred=tf.matmul (beta, X)

beta=tf.VaPiable(---) i
pred=tf.matmul(beta,X) '




Data Parallelism

beta=tf.Variable(...) i

: I
beta=tf.Variable(...) i i
: ' pred=tf.matmul(beta,X)

pred=tf.matmul (beta, X)

beta=tf.VaPiable(---) i
pred=tf.matmul(beta,X) '
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Distributing Data
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learn parameters (i.e. weights),

D iStri b Uti n g Data given graph with cost function

and optimizer
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Distributing Data
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Gradient Descent for Linear Regression

(Geron, 2017)



Gradient Descent for Linear Regression

Batch Gradient Descent
Stochastic Gradient Descent: One example at a time

Mini-batch Gradient Descent: k examples at a time.

38 s = Stochastic

3.6 +—— Mini-batch
3.4 | e==e Batch

91 3.2
3.0

2.8}
2.6

2.4+

2.5 310 315 410 4.5
0, (Geron, 2017)
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Gradient Descent for Linear Regression

Batch Gradient Descent

Stochastic Gradient Descent: One example at a time

Mini-batch Gradient Descent: k examples at a time.

3.8}
3.6}
3.4}

0,32}
3.0}
2.8}
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2.4+
2:5

=—a Stochastic
+— Mini-batch
—e Batch

3.0 3.5 4.0 4.5

(Geron, 2017)



Distributed TensorFlow

10000 |- I 1
A % 3-1
1000 ..t /I"—
g : - - §-  Scalar
3 =z —4§  Sparse 1GB
@ 100 —4  Sparse 16GB
5 —4— Dense 100M
3 Dense 1GB
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Number of workers

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow:
A System for Large-Scale Machine Learning. In OSDI (Vol. 16, pp. 265-283).
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Distributed TensorFlow

Distributed:

e Locally: Across processors (cpus, gpus, tpus)
e Across a Cluster: Multiple machine with multiple processors

discussed
previously



Local Distribution

Multiple devices on single machine

Program 1 Program 2




Local Distribution

Multiple devices on single machine

with tf.device(*“/cpu:1”)
beta=tf.Variable(...)

with tf.device(“/gpu:0”)
y_pred=tf.matmul(beta,X)




Local Distribution

Multiple devices on multiple machines

iwith tf.device(“/cpu:1”)
: beta=tf.Variable(...)

iwith tf.device(“/gpu:0”)
! y pred=tf.matmul(beta,X)

Machine B
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Distributed TensorFlow

Parallelisms:

e Data Parallelism: All nodes doing same thing on different subsets of data
e Graph/Model Parallelism: Different portions of model on different devices



Parallelisms
Model Parallelism

Multiple devices on multiple machines

iwith tf.device(“/cpu:1”)
: beta=tf.Variable(...)

iwith tf.device(“/gpu:0”)
! y pred=tf.matmul(beta,X)




Parallelisms Data Parallelism

beta=tf.Variable(...) i

: I
beta=tf.Variable(...) i i
: ' pred=tf.matmul(beta,X)

pred=tf.matmul (beta, X)

beta=tf.VaPiable(---) i
pred=tf.matmul(beta,X) '
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Distributed TensorFlow

Model Updates:

e Asynchronous Parameter Server
e Synchronous AllReduce (doesn’t work with Model Parallelism)



Asynchronous Parameter Server

“pS” “Worker"
" task0 task 0 task 1
/TF Server /TF Server /TF Server
/ Master / Master / Master /
Worker Worker Worker
NG /o T N S

Machine A

(Geron, 2017: HOML: p.324)

Machine B



Asynchronous Parameter Server

“pS” “Worker”
| |

" task O\'\\‘“Q'«D\ task 1

[ Parameter Server: Job is just to maintain
TF Server 'y alues of variables being optimized.

/Master /
Workers: do all the numerical “work” and
Worker / Qend updates to the parameter server. )
B / N S

Machine A (Geron, 2017: HOML.: p.324) Machine B



Synchronous All Reduce

“Worker” Worker Worker Worker

. ™\ /| Workers do computation, send parameter A
TF Server TF | updates to other workers, and store parameter

/ Master / ﬁ updates from other workers. Requires low
latency communication.

2 VVIorker // \/ VIVorker /) L WorIker /)
0., v 0.

Machine A (Geron, 2017: HOML.: p.324) Machine B



Distributed TF: Full Pipeline

Periodic
checkpoint

Paraén)eters
o o

Read params Apply grads

Shuffle queue

Dist. FS

“ Input
deits Reader

Preprocessing Training

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow:
A System for Large-Scale Machine Learning. In OSDI (Vol. 16, pp. 265-283).



e TF is a workflow system, where records are always tensors
o operations applied to tensors (as either Variables,
constants, or placeholder)

e Optimized for numerical / linear algebra
o automatically finds gradients
o custom kernels for given devices

e “Easily” distributes
o Within a single machine (local: many devices))
o Across a cluster (many machines and devices)
o Jobs broken up as parameter servers / workers makes
coordination of data efficient



