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● Understand TensorFlow as a data workflow system.

○ Know the key components of TensorFlow.

○ Understand the key concepts of distributed TensorFlow. 

● Execute basic distributed tensorflow program. 

● Establish a foundation to distribute deep learning models: 

● Convolutional Neural Networks

● Recurrent Neural Network (or LSTM, GRU)

Spark Overview  Learning Objectives
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A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

(i.stack.imgur.com)

A multi-dimensional matrix
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A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

(i.stack.imgur.com)

A 2-d tensor is just a matrix.
1-d: vector
0-d: a constant / scalar

Note: Linguistic ambiguity:
Dimensions of a Tensor =/=
Dimensions of a Matrix
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A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

Examples > 2-d : 
Image definitions in terms of RGB per pixel

Image[row][column][rgb] 

Subject, Verb, Object representation of language: 
Counts[verb][subject][object]

Spark Overview  What is TensorFlow?



A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

Technically, less abstract than RDDs which could hold tensors as 
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Trees, ...etc…). 

Then, why TensorFlow?
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Technically, less abstract than RDDs which could hold tensors as 
well as many other data structures (dictionaries/HashMaps, 
Trees, ...etc…). 

Then, why TensorFlow?

Efficient, high-level built-in linear algebra and machine 
learning optimization operations (i.e. transformations). 

enables complex models, like deep learning
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Efficient, high-level built-in linear algebra and machine 
learning optimization operations. 

enables complex models, like deep learning

(Bakshi, 2016, “What is Deep Learning? Getting Started With Deep Learning”)
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Efficient, high-level built-in linear algebra and machine 
learning operations. 

(Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016). Tensorflow: 
Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.)
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Operations on tensors are often conceptualized 
as graphs:

(Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016). Tensorflow: 
Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.)
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Operations on tensors are often conceptualized 
as graphs:

A simpler example:

c = tensorflow.matmul(a, b)

a b

c
=mm(A, B)

Spark Overview  TensorFlow



Operations on tensors are often conceptualized 
as graphs:

(Adventures in Machine Learning. 
Python TensorFlow Tutorial, 2017)

example:

d=b+c
e=c+2
a=d∗e

Spark Overview  TensorFlow
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Operations
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 an abstract computation
 (e.g. matrix multiply, add)
 executed by device kernels

tensors*
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                   mutable tensors
 constants -  constant
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session
 defines the environment in  
 which operations run. 
 (like a Spark context)

devices
 the specific devices (cpus or 
 gpus) on which to run the 
 session. 

tensors*
 variables - persistent 
                   mutable tensors
 constants -  constant
 placeholders - from data

operations
 an abstract computation
 (e.g. matrix multiply, add)
 executed by device kernels

graph

● Places operations on devices

● Stores the values of variables (when not distributed)

● Carries out execution: eval() or run()
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Typical use-case: (Supervised Machine Learning)
Determine weights, W,  of a function, f , such that ε is minimized:  f(X|W) = Y  + ε
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Typically very complex!Typically very complex!Typically, very complex!
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Typical use-case: 
Determine weights, W,  of a function, f , such that ε is minimized:  f(X|W) = Y  + ε

W  determined through gradient descent:  
    back propagating error across the network that defines f.  
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TensorFlow has built-in ability to derive gradients given a cost function. 

(rasbt, 
http://rasbt.github.io/mlxtend/user_guide/gener
al_concepts/gradient-optimization/)
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Linear Regression: Trying to find “betas” that minimize: 
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Linear Regression: Trying to find “betas” that minimize: 

Thus: 

matrix multiply
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Linear Regression: Trying to find “betas” that minimize: 

Thus: 

In standard linear equation: 

(if we add a column of 1s, mx + b is just matmul(m, x))

matrix multiply
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Linear Regression: Trying to find “betas” that minimize: 

Thus: 

matrix multiply
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Linear Regression: Trying to find “betas” that minimize: 

Thus: 

How to update?
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Linear Regression: Trying to find “betas” that minimize: 

Thus: 

How to update?

(for gradient descent) “learning rate” 
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Ridge Regression (L2 Penalized linear regression,                 )

1. Matrix Solution:

Spark Overview  Weights Derived from Gradients



Ridge Regression (L2 Penalized linear regression,                 )

1. Matrix Solution:

2. Gradient descent solution
(Mirrors many parameter optimization problems.)
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Ridge Regression (L2 Penalized linear regression,                 )

Gradient descent needs to solve. 
(Mirrors many parameter optimization problems.)

TensorFlow has built-in ability to derive gradients given a cost function. 
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TensorFlow has built-in ability to derive gradients given a cost function. 
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Options for Distributing ML
1. Distribute copies of entire dataset 

a. Train over all  with different hyperparameters
b. Train different folds per worker node.

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data. 
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  Distributing Data
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Combine 
parameters

update params of each node and repeat



(Geron, 2017)
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Batch Gradient Descent

Stochastic Gradient Descent: One example at a time

Mini-batch Gradient Descent: k examples at a time. 

(Geron, 2017)
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Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow: 
A System for Large-Scale Machine Learning. In OSDI (Vol. 16, pp. 265-283).
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previously
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TF Server TF Server TF Server

    “ps” “worker”
  task 0   task 0 task 1

Master

Worker

Master

Worker

Master

Worker

Parameter Server: Job is just to maintain 
values of variables being optimized. 

Workers: do all the numerical “work” and 
send updates to the parameter server.  

  Asynchronous Parameter Server



CPU:0 CPU:1 GPU:0CPU:0

Machine A Machine B(Geron, 2017: HOML: p.324)

TF Server TF Server TF Server

 “Worker” Worker Worker Worker

Master

Worker

Master

Worker

Master

Worker

Workers do computation, send parameter 
updates to other workers, and store parameter 
updates from other workers. Requires low 
latency communication. 

  Synchronous All Reduce



Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow: 
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  Distributed TF: Full Pipeline



● TF is a workflow system, where records are always tensors
○ operations applied to tensors (as either Variables, 

constants, or placeholder)
● Optimized for numerical  / linear algebra 

○ automatically finds gradients
○ custom kernels for given devices

● “Easily” distributes
○ Within a single machine (local: many devices))
○ Across a cluster (many machines and devices)
○ Jobs broken up as parameter servers / workers makes 

coordination of data efficient
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