Distributed TensorFlow

CSE545 - Spring 2020
Stony:Brook University

H. Andrew Schwartz

Big Data Analytics, The Class

Goal: Generalizations
A model or summarization of the data.

/7 AN

Dato Frameworke Algorithme and Analyses

g/mf/a.h't Y §’ earch

Haa/aop Fie S‘yﬁ‘ehJ Qpany H ypoﬂteric T%’ffhg

G treamingf
MapRedvess”

Graph Analysis

7 a Recommendation @ctemc
ensorflow
Dee,b learm‘ng

Limitations of Spark

Spark is fast for being so flexible
e Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.

e Flexible: Many transformations -- can contain any custom code.

Limitations of Spark

Spark is fast for being so flexible
e Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.
e Flexible: Many transformations -- can contain any custom code.
However:

e Hadoop MapReduce can still be better for extreme |0, data that will not fit in
memory across cluster.

Limitations of Spark

Spark is fast for being so flexible
e Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.
e Flexible: Many transformations -- can contain any custom code.
However:

e Hadoop MapReduce can still be better for extreme |0, data that will not fit in
memory across cluster.

|O Bound Compute Bound

{—— MapRedoce Toork >

large files (TBs or PBs) (1s of TBs, 100s of GBs) many numeric computations

Limitations of Spark

Spark is fast for being so flexible
e Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.
e Flexible: Many transformations -- can contain any custom code.
However:

e Hadoop MapReduce can still be better for extreme |0, data that will not fit in
memory across cluster.

e Modern machine learning (esp. Deep learning), a common big data task,
requires heavy numeric computation.

|O Bound Compute Bound
{ MopReduce Crark >
(large files: TBs or PBs) (1s of TBs, 100s of GBs) (many numeric computations)

* this is the subjective approximation of the instructor as of February 2020. A lot of factors at play.

Limitations of Spark

Spark is fast for being so flexible
e Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.
e Flexible: Many transformations -- can contain any custom code.
However:

e Hadoop MapReduce can still be better for extreme |0, data that will not fit in
memory across cluster.

e Modern machine learning (esp. Deep learning), a common big data task,
requires heavy numeric computation.

|O Bound Compute Bound
<—4daféaduce Spark TemsorFlow >
(large files: TBs or PBs) (1s of TBs, 100s of GBs) (many numeric computations)

* this is the subjective approximation of the instructor as of February 2020. A lot of factors at play.

Learning Objectives

e Understand TensorFlow as a data workflow system.
o Know the key components of TensorFlow.
o Understand the key concepts of distributed TensorFlow.
e Execute basic distributed tensorflow program.
e Establish a foundation to distribute deep learning models:
e Convolutional Neural Networks
e Recurrent Neural Network (or LSTM, GRU)

What is TensorFlow?

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

What is TensorFlow?

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

A multi-dimensional matrix

(i.stack.imgur.com)

What is TensorFlow?

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

A 2-d tensor is just a matrix.
1-d: vector
0-d: a constant / scalar

Note: Linguistic ambiguity:
Dimensions of a Tensor =/=
Dimensions of a Matrix

(i.stack.imgur.com)

What is TensorFlow?

A workflow system catered to numerical computation.
One view: Like Spark, but uses tensors instead of RDDs.
Examples > 2-d :

Image definitions in terms of RGB per pixel
Image[row][column][rgb]

Subject, Verb, Object representation of language:
Counts|[verb][subject][object]

What is TensorFlow?

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

Technically, less abstract than RDDs which could hold tensors as
well as many other data structures (dictionaries/HashMaps,
Trees, ...efc...).

Then, why TensorFlow?

What is TensorFlow?

Efficient, high-level built-in linear algebra and machine
learning optimization operations (i.e. transformations).

enables complex models, like deep learning

Then, why TensorFlow?

What is TensorFlow?

Efficient, high-level built-in linear algebra and machine
learning optimization operations.

enables complex models, like deep learning

=

Patterns of Local [ESEE
Contrast 17

Face
Features

(

7
<

-
K
R

NEERZ D
K
{ele
KX
9‘0 o)

Output Layer

Hidden Layer 2

Hidden Layer 1
(Bakshi, 2016, “What is Deep Learning? Getting Started With Deep Learning”)

Input Layer

What is TensorFlow?

Efficient, high-level built-in linear algebra and machine
learning operations.

import tensorflow as tf

b = tf.Variable(tf.zeros([100])) # 100-d vector, init to zeroes
W = tf.Variable (tf.random_uniform([784,100],-1,1)) # 784x100 matrix w/rnd vals
x = tf.placeholder (name="x") # Placeholder for input
relu = tf.nn.relu(tf.matmul (W, x) + b) # Relu (Wx+b)
B =2 [uweal # Cost computed as a function
of Relu
s = tf.Session()
for step in xrange (0, 10):
input = ...construct 100-D input array # Create 100-d vector for input
result = s.run(C, feed_dict={x: input}) # Fetch cost, feeding x=input

print step, result

(Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016). Tensorflow:
Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.)

TensorFlow

Operations on tensors are often conceptualized @
as graphs:
import tensorflow as tf
b = tf.Variable (tf.zeros([100])) RELU
W = tf.Variable (tf.random_uniform([784,100],-1,1))
X = tf.placeholder (name="x")

relu = tf.nn.relu(tf.matmul (W, x) + b) -

B & [uaeal
s = tf.Session|() m
for step in xrange (0, 10):

input = ...construct 100-D input array
result = s.run(C, feed_dict={x: input})
print step, result

(Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016). Tensorflow:
Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arX/v 1603 04467.)

TensorFlow

Operations on tensors are often conceptualized
as graphs:

A simpler example:
c = tensorflow.matmul(a, b) w

TensorFlow

Operations on tensors are often conceptualized

as graphs: .

example:

d=b+c
e=c+2
a=d*e

(Adventures in Machine Learning.
Python TensorFlow Tutorial, 2017)

Ingredients of a TensorFlow

tensors*

variables - persistent
mutable tensors

constants - constant

placeholders - from data

operations

an abstract computation
(e.g. matrix multiply, add)
executed by device kernels

* technically, still operations

session devices

defines the environment in the specific devices (cpus or
which operations run. gpus) on which to run the
(like a Spark context) session.

Ingredients of a TensorFlow

tensors*
variables - persistent o tf.Variable(initial _value, name)
mutable tensors o tf.constant(value, type, name)

constants - constant o tf.placeholder(type, shape, name)
placeholders - from data

* technically, still operations

Ingredients of a TensorFlow

operations
an abstract computation

(e.g. matrix multiply, add)
executed by device kernels

Category

Examples

Element-wise mathematical operations
Array operations

Matrix operations

Stateful operations

Neural-net building blocks
Checkpointing operations

Queue and synchronization operations
Control flow operations

Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal, ...
Concat, Slice, Split, Constant, Rank, Shape, Shuffle, ...
MatMul, MatrixInverse, MatrixDeterminant, ...
Variable, Assign, AssignAdd, ...

SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool, ...
Save, Restore

Enqueue, Dequeue, MutexAcquire, MutexRelease, ...
Merge, Switch, Enter, Leave, Nextlteration

Ingredients of a TensorFlow

e Places operations on devices
e Stores the values of variables (when not distributed)

e Carries out execution: eval() or run()

session
defines the environment in

which operations run.
(like a Spark context)

Ingredients of a TensorFlow

tensors*

variables - persistent
mutable tensors

constants - constant

placeholders - from data

session

defines the environment in
which operations run.

(like a Spark context)

operations

an abstract computation
(e.g. matrix multiply, add)
executed by device kernels

devices

the specific devices (cpus or
gpus) on which to run the
session.

Distributed TensorFlow

Typical use-case: (Supervised Machine Learning)
Determine weights, 7%, of a function, f, such that € is minimized: AX|%)=7 +&

Distributed TensorFlow

Typical use-case:
Determine weights, 7%, of a function, f, such that € is minimized: AX|%)=7 +&

Distributed TensorFlow

Typical use-case:
Determine weights, 7%, of a function, f, such that € is minimized: AX|%)=7 +&

1 2 3 4 5 6
XXX X, X, X,

Distributed TensorFlow

Typical use-case:
Determine weights, 7%, of a function, f, such that € is minimized: AX|%)=7 +&

8 9 o

X, X, X X

13 14 15

XX X X XX
X, X leglvenwﬂfw , W >(Y

(typica//y, p>=m

Distributed TensorFlow

. fXw) = ¥
Typical use-case: V= (XIW) + €

Determine weights, %, of a function, f, such that |€ | is minimized SIS

£E=y-Y

Distributed TensorFlow

Typical use-case:

Determine weights, 7, of a function,f, such that € is minimized:

Typically, very complex!

X7 Xg Xg Lfgiven W, W, W
X13 X14 }(15 v X

(typically, p >= m)"

Distributed TensorFlow

. FXIW) = ¥
Typical use-case: V- (XW) + €

Determine weights, %, of a function, f, such that € is minimized: V-V +g

7 determined through gradient descent:
back propagating error across the network that defines f.

XX, X X XX
X, X XgLfgiven W, W,..,

8

X, X, X X

P 1 D wypically, p>= n/"

Hidden Layer 2

Distributed TensorFlow

Typical use-case:

Determine weights, 7, of a function,f, such that € is minimized:

7 determined through gradient descent:
back propagating error across the netwt at defines f.

minimizes € on N training examples

Weights Derived from Gradients

J(w) / __— Gradient

Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:

3 = argmin "{Z — 4i)°

Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:

)’ — argmain —
matrix multiply g ";{Z y’
N

;i = X;3 Thus: B = argming{» (yi — X:8)*}

1=0

Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:

N
3 = ar g'm.‘i'n.lcg{z (y? _ y*?)'2 }

matrix multiply

N
y; = X;3 Thus: B = a:rg-m.z"n.g{Z (yi — Xi8)*}
i=0
In standard linear equation:
SRR L1 117
y = mz + b let ' =ax 4+ |1,1,..., 1|y

then, y = ma’
(if we add a column of 1s, mx + b is just matmul(m, x))

Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:
N

3 = arg '77?.2"7‘2.5{ Z (yi — gz) 7 }

matrix multiply :
;

N

y; = X;8 Thus: B = argming{» (yi — X:8)*}
1=0

Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:

N
3 = arg '77?.2"7‘2.5{ Z (yi — gz) 7 }
i N
1=0

How to update? Snew = Bprev — @ * grad

Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:

N
3 = ar g'mi'n.ld{z (y? _ g?)2 }

N
y; = X;8 Thus: B = argming{» (yi — X:8)*}
1=0

How to Update? ,."‘.:—))new — ..f}prez_r — (X * gl‘ad —————————————————————

(for gradient descent) “‘learning rate”

Weights Derived from Gradients

Ridge Regression (L2 Penalized linear regression, /\‘ ‘J’) “;)

I

.,\,' I
37 = argmin{ E (i — E ziiB3;)” + A E 3; h
i=1 j=1

j=1

1. Matrix Solution:

B = (XTX + M) XTy

Weights Derived from Gradients

Ridge Regression (L2 Penalized linear regression,)\‘ \j| [%)

4 N
N m

gridge =(n‘gm.'z'.'n,5{E (yi — E Ti;3;)° + A E 3 1
i=1 7=1

2. Gradient descent solution

(Mirrors many parameter optimization problems.)
\. J

1. Matrix Solution:

B = (XTX + M) XTy

Weights Derived from Gradients

Ridge Regression (L2 Penalized linear regression, /\‘ \j| \%)

()

I

N
‘A' I " . 2 ; 2
grid =(ugmz.n.,j-{]5 (yi — E Ti;3;)° + A E 351
i=1

7=1

Gradient descent needs to solve.

(Mirrors many parameter optimization problems.
. J

TensorFlow has built-in ability to derive gradients given a|cost function

Weights Derived from Gradients

Ridge Regression (L2 Penalized linear regression,)\‘ \j| [%)

()

It

N
aridge __ . 9
g —(ugmzn.,j{]g (yi — E zi; 3;) /\E 37}
i=1

=1

Gradient descent needs to solve.

(Mirrors many parameter optimization problems.
. J

TensorFlow has built-in ability to derive gradients given a|cost function

tf.gradients(cost, [params])

Weights Derived from Gradients

Paregeters Periodic |
O - -) checkpoint
Read params Apply grads
’_’C’Q:\ Queue
] >))))) Dist. FS
Preprocessing Training

TensorFlow has built-in ability to derive gradients given a cost function.

tf.gradients(cost, [params])

Options for distribution

1. Distribute copies of entire dataset
a. Train over all with different hyperparameters
b. Train different folds per worker node.

Options for distribution

1. Distribute copies of entire dataset
a. Train over all with different parameters
b. Train different folds per worker node.

2. Distribute data

a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server

ii. Distributed All-Reduce

Options for distribution

1. Distribute copies of entire dataset
a. Train over all with different parameters
b. Train different folds per worker node.

2. Distribute data

a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server

ii. Distributed All-Reduce

3. Distribute model or individual operations (e.g. matrix multiply)

Options for distribution

1. Distribute copies of entire dataset
a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters
i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal
3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

ol dle] s L3 (o] e IL5) (] e1¥] 4 [e] g Done often in practice. Not

talked about much because it's
1. Distribute copies of entire dataset — mostly as easy as it sounds.

a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters
i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal
3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

ol dle] s L3 (o] e IL5) (] e1¥] 4 [e] g Done often in practice. Not

talked about much because it's
1. Distribute copies of entire dataset — mostly as easy as it sounds.

a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories
2. Distribute data \d\m\ Preferred method for big data or
a. Eachnode flnd§ parameters.for subset of da very complex models (i.e.
b. Needs mechanism for updating parameters . .
models with many internal

i. Centralized parameter server
i. Distributed All-Reduce parameters).

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal
3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

ol dle] s L3 (o] e IL5) (] e1¥] 4 [e] g Done often in practice. Not

talked about much because it's
1. Distribute copies of entire dataset - mostly as easy as it sounds.

a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories
2. Distribute data Preferred method for big data or
a. Each node finds parameters foméla\ very complex models (i.e.

- Neﬁ W)E@Ch ismé:uulo sm e models with many internal
. Lala. Far 1Ism.. y
i. Distributed All-Reduce parameters).

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal
3. Distribute model or individual operations (e.g. matrix multiply)

Pro: PaiMlodel Parellelism:d Con: High communication for transferring
Intermediar data.

Model Parallelism

Multiple devices on multiple machines

with tf.device(“/cpu:1”)

i with tf.device(*“/gpu:0”)
: beta=tf.Variable(...)

i y pred=tf.matmul(beta,X)

Data Parallelism

beta=tf.Variable(...) i

: I
beta=tf.Variable(...) i i
: ' pred=tf.matmul(beta,X)

pred=tf.matmul (beta, X)

beta=tf.VaPiable(---) i
pred=tf.matmul(beta,X) '

Data Parallelism

beta=tf.Variable(...) i

: I
beta=tf.Variable(...) i i
: ' pred=tf.matmul(beta,X)

pred=tf.matmul (beta, X)

beta=tf.VaPiable(---) i
pred=tf.matmul(beta,X) '

\/

worker:0

Distributing Data

- X 3 r)’\
0

learn parameters (i.e. weights),

D iStri b Uti n g Data given graph with cost function

and optimizer

>
‘<

0 P 7 ~
(o]

batch_size-1 { i > L batchO)
4 / N

{ /Gbatch1
} . / <

{ il 6batch2
|)
4 N

{ b o
L > |
4 N
ad
4 N
ad
4)
ad
4 N
N-batch_size { }

~ Y

N

Distributing Data

>
‘<

parameters

N-batch_size

RN A

—A— —A— —A— —A— —A— —A— —A— —A—

D iStri b Uti n g Data update params of each node and repeat
X

=

O D
}—P (&)
batch_size-1 { L batch0 |
g N
{ i | 6batch1
A)
g N
{ } 8)
g N
{ } L) Combine
} t) parameters
{ 8)
g N
{ } 8)
g N
{ } 8)
g N
N-batch_size { }
~ Y

N

Gradient Descent for Linear Regression

(Geron, 2017)

Gradient Descent for Linear Regression

Batch Gradient Descent
Stochastic Gradient Descent: One example at a time

Mini-batch Gradient Descent: k examples at a time.

38 s = Stochastic

3.6 +—— Mini-batch
3.4 | e==e Batch

91 3.2
3.0

2.8}
2.6

2.4+

2.5 310 315 410 4.5
0, (Geron, 2017)

J(w)

Gradient Descent for Linear Regression

Batch Gradient Descent

Stochastic Gradient Descent: One example at a time

Mini-batch Gradient Descent: k examples at a time.

3.8}
3.6}
3.4}

0,32}
3.0}
2.8}
2.6}

2.4+
2:5

=—a Stochastic
+— Mini-batch
—e Batch

3.0 3.5 4.0 4.5

(Geron, 2017)

Distributed TensorFlow

10000 |- I 1
A % 3-1
1000 ..t /I"—
g : - - §- Scalar
3 =z —4§ Sparse 1GB
@ 100 —4 Sparse 16GB
5 —4— Dense 100M
3 Dense 1GB
10
1 | | | | | |
1 2 5 10 25 50 100

Number of workers

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow:
A System for Large-Scale Machine Learning. In OSDI (Vol. 16, pp. 265-283).

Distributed TensorFlow

Distributed:

e Locally: Across processors (cpus, gpus, tpus)
e Across a Cluster: Multiple machine with multiple processors

Distributed TensorFlow

Distributed:

e Locally: Across processors (cpus, gpus, tpus)
e Across a Cluster: Multiple machine with multiple processors

Parallelisms:

e Data Parallelism: All nodes doing same thing on different subsets of data
e Graph/Model Parallelism: Different portions of model on different devices

Distributed TensorFlow

Distributed:

e Locally: Across processors (cpus, gpus, tpus)
e Across a Cluster: Multiple machine with multiple processors

Parallelisms:

e Data Parallelism: All nodes doing same thing on different subsets of data
e Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

e Asynchronous Parameter Server
e Synchronous AllReduce (doesn’t work with Model Parallelism)

Distributed TensorFlow

Distributed:

e Locally: Across processors (cpus, gpus, tpus)
e Across a Cluster: Multiple machine with multiple processors

discussed
previously

Local Distribution

Multiple devices on single machine

Program 1 Program 2

Local Distribution

Multiple devices on single machine

with tf.device(*“/cpu:1”)
beta=tf.Variable(...)

with tf.device(“/gpu:0”)
y_pred=tf.matmul(beta,X)

Local Distribution

Multiple devices on multiple machines

iwith tf.device(“/cpu:1”)
: beta=tf.Variable(...)

iwith tf.device(“/gpu:0”)
! y pred=tf.matmul(beta,X)

Machine B

Distributed TensorFlow

Distributed:

e Locally: Across processors (cpus, gpus, tpus)
e Across a Cluster: Multiple machine with multiple processors

Parallelisms:

e Data Parallelism: All nodes doing same thing on different subsets of data
e Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

e Asynchronous Parameter Server
e Synchronous AllReduce (doesn’t work with Model Parallelism)

Distributed TensorFlow

Parallelisms:

e Data Parallelism: All nodes doing same thing on different subsets of data
e Graph/Model Parallelism: Different portions of model on different devices

Parallelisms
Model Parallelism

Multiple devices on multiple machines

iwith tf.device(“/cpu:1”)
: beta=tf.Variable(...)

iwith tf.device(“/gpu:0”)
! y pred=tf.matmul(beta,X)

Parallelisms Data Parallelism

beta=tf.Variable(...) i

: I
beta=tf.Variable(...) i i
: ' pred=tf.matmul(beta,X)

pred=tf.matmul (beta, X)

beta=tf.VaPiable(---) i
pred=tf.matmul(beta,X) '

Distributed TensorFlow

Distributed:

e Locally: Across processors (cpus, gpus, tpus)
e Across a Cluster: Multiple machine with multiple processors

Parallelisms:

e Data Parallelism: All nodes doing same thing on different subsets of data
e Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

e Asynchronous Parameter Server
e Synchronous AllReduce (doesn’t work with Model Parallelism)

Distributed TensorFlow

Model Updates:

e Asynchronous Parameter Server
e Synchronous AllReduce (doesn’t work with Model Parallelism)

Asynchronous Parameter Server

“pS” “Worker"
" task0 task 0 task 1
/TF Server /TF Server /TF Server
/ Master / Master / Master /
Worker Worker Worker
NG /o T N S

Machine A

(Geron, 2017: HOML: p.324)

Machine B

Asynchronous Parameter Server

“pS” “Worker”
| |

" task O\'\\‘“Q'«D\ task 1

[Parameter Server: Job is just to maintain
TF Server 'y alues of variables being optimized.

/Master /
Workers: do all the numerical “work” and
Worker / Qend updates to the parameter server.)
B / N S

Machine A (Geron, 2017: HOML.: p.324) Machine B

Synchronous All Reduce

“Worker” Worker Worker Worker

. ™\ /| Workers do computation, send parameter A
TF Server TF | updates to other workers, and store parameter

/ Master / ﬁ updates from other workers. Requires low
latency communication.

2 VVIorker // \/ VIVorker /) L WorIker /)
0., v 0.

Machine A (Geron, 2017: HOML.: p.324) Machine B

Distributed TF: Full Pipeline

Periodic
checkpoint

Paraén)eters
o o

Read params Apply grads

Shuffle queue

Dist. FS

“ Input
deits Reader

Preprocessing Training

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow:
A System for Large-Scale Machine Learning. In OSDI (Vol. 16, pp. 265-283).

e TF is a workflow system, where records are always tensors
o operations applied to tensors (as either Variables,
constants, or placeholder)

e Optimized for numerical / linear algebra
o automatically finds gradients
o custom kernels for given devices

e “Easily” distributes
o Within a single machine (local: many devices))
o Across a cluster (many machines and devices)
o Jobs broken up as parameter servers / workers makes
coordination of data efficient

