
Distributed TensorFlow

CSE545 - Spring 2020
Stony Brook University

 Big Data Analytics, The Class
Goal: Generalizations

A model or summarization of the data.

Data Frameworks Algorithms and Analyses

Hadoop File System

MapReduce

Spark

Tensorflow

Similarity Search

Recommendation Systems
Graph Analysis

Deep Learning

Streaming
Hypothesis Testing

Spark Overview

Spark is fast for being so flexible

● Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.

● Flexible: Many transformations -- can contain any custom code.

 Limitations of Spark

Spark Overview

Spark is fast for being so flexible

● Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.

● Flexible: Many transformations -- can contain any custom code.

However:

● Hadoop MapReduce can still be better for extreme IO, data that will not fit in
memory across cluster.

 Limitations of Spark

Spark Overview

Spark is fast for being so flexible

● Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.

● Flexible: Many transformations -- can contain any custom code.

However:

● Hadoop MapReduce can still be better for extreme IO, data that will not fit in
memory across cluster.

 Limitations of Spark

IO Bound

large files (TBs or PBs)

Compute Bound

many numeric computations
SparkMapReduce

(1s of TBs, 100s of GBs)

Spark Overview

Spark is fast for being so flexible

● Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.

● Flexible: Many transformations -- can contain any custom code.

However:

● Hadoop MapReduce can still be better for extreme IO, data that will not fit in
memory across cluster.

● Modern machine learning (esp. Deep learning), a common big data task,
requires heavy numeric computation.

 Limitations of Spark

IO Bound

(large files: TBs or PBs)

Compute Bound

(many numeric computations)
SparkMapReduce

(1s of TBs, 100s of GBs)
* this is the subjective approximation of the instructor as of February 2020. A lot of factors at play.

Spark Overview

Spark is fast for being so flexible

● Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.

● Flexible: Many transformations -- can contain any custom code.

However:

● Hadoop MapReduce can still be better for extreme IO, data that will not fit in
memory across cluster.

● Modern machine learning (esp. Deep learning), a common big data task,
requires heavy numeric computation.

 Limitations of Spark

IO Bound

(large files: TBs or PBs)

Compute Bound

(many numeric computations)
SparkMapReduce

(1s of TBs, 100s of GBs)

TensorFlow

* this is the subjective approximation of the instructor as of February 2020. A lot of factors at play.

● Understand TensorFlow as a data workflow system.

○ Know the key components of TensorFlow.

○ Understand the key concepts of distributed TensorFlow.

● Execute basic distributed tensorflow program.

● Establish a foundation to distribute deep learning models:

● Convolutional Neural Networks

● Recurrent Neural Network (or LSTM, GRU)

Spark Overview Learning Objectives

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

Spark Overview What is TensorFlow?

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

(i.stack.imgur.com)

A multi-dimensional matrix

Spark Overview What is TensorFlow?

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

(i.stack.imgur.com)

A 2-d tensor is just a matrix.
1-d: vector
0-d: a constant / scalar

Note: Linguistic ambiguity:
Dimensions of a Tensor =/=
Dimensions of a Matrix

Spark Overview What is TensorFlow?

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

Examples > 2-d :
Image definitions in terms of RGB per pixel

Image[row][column][rgb]

Subject, Verb, Object representation of language:
Counts[verb][subject][object]

Spark Overview What is TensorFlow?

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

Technically, less abstract than RDDs which could hold tensors as
well as many other data structures (dictionaries/HashMaps,
Trees, ...etc…).

Then, why TensorFlow?

Spark Overview What is TensorFlow?

Technically, less abstract than RDDs which could hold tensors as
well as many other data structures (dictionaries/HashMaps,
Trees, ...etc…).

Then, why TensorFlow?

Efficient, high-level built-in linear algebra and machine
learning optimization operations (i.e. transformations).

enables complex models, like deep learning

Spark Overview What is TensorFlow?

Efficient, high-level built-in linear algebra and machine
learning optimization operations.

enables complex models, like deep learning

(Bakshi, 2016, “What is Deep Learning? Getting Started With Deep Learning”)

Spark Overview What is TensorFlow?

Efficient, high-level built-in linear algebra and machine
learning operations.

(Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016). Tensorflow:
Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.)

Spark Overview What is TensorFlow?

Operations on tensors are often conceptualized
as graphs:

(Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016). Tensorflow:
Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.)

Spark Overview TensorFlow

Operations on tensors are often conceptualized
as graphs:

A simpler example:

c = tensorflow.matmul(a, b)

a b

c
=mm(A, B)

Spark Overview TensorFlow

Operations on tensors are often conceptualized
as graphs:

(Adventures in Machine Learning.
Python TensorFlow Tutorial, 2017)

example:

d=b+c
e=c+2
a=d∗e

Spark Overview TensorFlow

session
 defines the environment in
 which operations run.
 (like a Spark context)

devices
 the specific devices (cpus or
 gpus) on which to run the
 session.

tensors*
 variables - persistent
 mutable tensors
 constants - constant
 placeholders - from data

operations
 an abstract computation
 (e.g. matrix multiply, add)
 executed by device kernels

graph
* technically, still operations

Spark Overview Ingredients of a TensorFlow

session
 defines the environment in
 which operations run.
 (like a Spark context)

devices
 the specific devices (cpus or
 gpus) on which to run the
 session.

tensors*
 variables - persistent
 mutable tensors
 constants - constant
 placeholders - from data

operations
 an abstract computation
 (e.g. matrix multiply, add)
 executed by device kernels

graph

* technically, operations that work with tensors.

○ tf.Variable(initial_value, name)
○ tf.constant(value, type, name)
○ tf.placeholder(type, shape, name)

Spark Overview Ingredients of a TensorFlow

* technically, still operations

Operations

operations
 an abstract computation
 (e.g. matrix multiply, add)
 executed by device kernels

tensors*
 variables - persistent
 mutable tensors
 constants - constant
 placeholders - from data

Spark Overview Ingredients of a TensorFlow

session
 defines the environment in
 which operations run.
 (like a Spark context)

devices
 the specific devices (cpus or
 gpus) on which to run the
 session.

tensors*
 variables - persistent
 mutable tensors
 constants - constant
 placeholders - from data

operations
 an abstract computation
 (e.g. matrix multiply, add)
 executed by device kernels

graph

● Places operations on devices

● Stores the values of variables (when not distributed)

● Carries out execution: eval() or run()

Spark Overview Ingredients of a TensorFlow

session
 defines the environment in
 which operations run.
 (like a Spark context)

devices
 the specific devices (cpus or
 gpus) on which to run the
 session.

tensors*
 variables - persistent
 mutable tensors
 constants - constant
 placeholders - from data

operations
 an abstract computation
 (e.g. matrix multiply, add)
 executed by device kernels

graph

* technically, operations that work with tensors.Spark Overview Ingredients of a TensorFlow

Typical use-case: (Supervised Machine Learning)
Determine weights, W, of a function, f , such that ε is minimized: f(X|W) = Y + ε

Spark Overview Distributed TensorFlow

Typical use-case:
Determine weights, W, of a function, f , such that ε is minimized: f(X|W) = Y + ε

Spark Overview Distributed TensorFlow

X
1
 X

2
 X

3
 Y

Typical use-case:
Determine weights, W, of a function, f , such that ε is minimized: f(X|W) = Y + ε

Spark Overview Distributed TensorFlow

X
1
 X

2
 X

3
 Y

X
1
 X

2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y

 X
13

 X
14

 X
15

... X
m

Typical use-case:
Determine weights, W, of a function, f , such that ε is minimized: f(X|W) = Y + ε

Spark Overview Distributed TensorFlow

X
1
 X

2
 X

3
 Y

X
1
 X

2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y

 X
13

 X
14

 X
15

... X
m

f given w
1

, w
2
...., w

p

(typically, p >= m)

Typical use-case:
Determine weights, W, of a function, f , such that |ε| is minimized: f(X|W) = Y + ε

Spark Overview Distributed TensorFlow

X
1
 X

2
 X

3
 Y

X
1
 X

2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y

 X
13

 X
14

 X
15

... X
m

f given w
1

, w
2
...., w

p

(typically, p >= m)

f(X|W) = Ŷ
Y = (X|W) + ε

Y = Ŷ + ε
ε = Ŷ - Y

Typical use-case:
Determine weights, W, of a function, f , such that ε is minimized: f(X|W) = Y + ε

Spark Overview Distributed TensorFlow

X
1
 X

2
 X

3
 Y

X
1
 X

2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y

 X
13

 X
14

 X
15

... X
m

f given w
1

, w
2
...., w

p

(typically, p >= m)

Typically very complex!Typically very complex!Typically, very complex!

f(X|W) = Ŷ
ε = Ŷ - Y
f(X|W) = Ŷ

Y = (X|W) + ε
Y = Ŷ + ε
ε = Ŷ - Y

X
1
 X

2
 X

3
 Y

X
1

(1) X
2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y(1)

 X
13

 X
14

 X
15

... X
m

Typical use-case:
Determine weights, W, of a function, f , such that ε is minimized: f(X|W) = Y + ε

W determined through gradient descent:
 back propagating error across the network that defines f.

Spark Overview Distributed TensorFlow

f given w
1

, w
2
...., w

p

(typically, p >= m)

f(X|W) = Ŷ
ε = Ŷ - Y
f(X|W) = Ŷ

Y = (X|W) + ε
Y = Ŷ + ε
ε = Ŷ - Y

X
1
 X

2
 X

3
 Y

X
1

(1) X
2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y(1)

 X
13

 X
14

 X
15

... X
m

Typical use-case:
Determine weights, W, of a function, f , such that ε is minimized: f(X|W) = Y + ε

W determined through gradient descent:
 back propagating error across the network that defines f.

Spark Overview Distributed TensorFlow

f given w
1

, w
2
...., w

p

(typically, p >= m)

X
1

(2) X
2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y(2)

 X
13

 X
14

 X
15

... X
m

X
1

(3) X
2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y(3)

 X
13

 X
14

 X
15

... X
m

X
1

(4) X
2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y(4)

 X
13

 X
14

 X
15

... X
m

X
1

(...) X
2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 ...

 X
13

 X
14

 X
15

... X
m

X
1

(N) X
2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y(N)

 X
13

 X
14

 X
15

... X
m

minimizes ε on N training examples

f(X|W) = Ŷ
ε = Ŷ - Y
f(X|W) = Ŷ

Y = (X|W) + ε
Y = Ŷ + ε
ε = Ŷ - Y

TensorFlow has built-in ability to derive gradients given a cost function.

(rasbt,
http://rasbt.github.io/mlxtend/user_guide/gener
al_concepts/gradient-optimization/)

Spark Overview Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:

Spark Overview Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:

Thus:

matrix multiply

Spark Overview Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:

Thus:

In standard linear equation:

(if we add a column of 1s, mx + b is just matmul(m, x))

matrix multiply

Spark Overview Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:

Thus:

matrix multiply

Spark Overview Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:

Thus:

How to update?

Spark Overview Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:

Thus:

How to update?

(for gradient descent) “learning rate”

Spark Overview Weights Derived from Gradients

Ridge Regression (L2 Penalized linear regression,)

1. Matrix Solution:

Spark Overview Weights Derived from Gradients

Ridge Regression (L2 Penalized linear regression,)

1. Matrix Solution:

2. Gradient descent solution
(Mirrors many parameter optimization problems.)

Spark Overview Weights Derived from Gradients

Ridge Regression (L2 Penalized linear regression,)

Gradient descent needs to solve.
(Mirrors many parameter optimization problems.)

TensorFlow has built-in ability to derive gradients given a cost function.

Spark Overview Weights Derived from Gradients

Ridge Regression (L2 Penalized linear regression,)

Gradient descent needs to solve.
(Mirrors many parameter optimization problems.)

TensorFlow has built-in ability to derive gradients given a cost function.

Spark Overview Weights Derived from Gradients

TensorFlow has built-in ability to derive gradients given a cost function.

Spark Overview Weights Derived from Gradients

Options for Distributing ML
1. Distribute copies of entire dataset

a. Train over all with different hyperparameters
b. Train different folds per worker node.

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Spark Overview Options for distribution

1. Distribute copies of entire dataset
a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Options for Distributing MLSpark Overview Options for distribution

1. Distribute copies of entire dataset
a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Options for Distributing MLSpark Overview Options for distribution

1. Distribute copies of entire dataset
a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Options for Distributing MLSpark Overview Options for distribution

1. Distribute copies of entire dataset
a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Options for Distributing MLSpark Overview Options for distribution Done often in practice. Not
talked about much because it’s
mostly as easy as it sounds.

Options for Distributing MLSpark Overview Options for distribution
1. Distribute copies of entire dataset

a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Done often in practice. Not
talked about much because it’s
mostly as easy as it sounds.

Preferred method for big data or
very complex models (i.e.
models with many internal
parameters).

Options for Distributing MLSpark Overview Options for distribution
1. Distribute copies of entire dataset

a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Done often in practice. Not
talked about much because it’s
mostly as easy as it sounds.

Preferred method for big data or
very complex models (i.e.
models with many internal
parameters).

Data Parellelism

Model Parellelism

 Model Parallelism

Multiple devices on multiple machines

Machine A
CPU:0 CPU:1

Machine B
GPU:0

Transfer Tensors

 Data Parallelism

CPU:0 CPU:1 GPU:0

worker:0 worker:1 worker:2

 Data Parallelism

X y
0

N

 Distributing Data

X y
0

batch_size-1

N-batch_size

N

 Distributing Data

 Distributing Data
X y

0

batch_size-1

N-batch_size

N

𝛳batch0

learn parameters (i.e. weights),
given graph with cost function
and optimizer

𝛳batch1

𝛳batch2

𝛳...

X y
0

batch_size-1

N-batch_size

N

𝛳batch0

𝛳batch1

Combine
parameters

 Distributing Data

 Distributing Data
X y

0

batch_size-1

N-batch_size

N

𝛳batch0

𝛳batch1

Combine
parameters

update params of each node and repeat

(Geron, 2017)

 Gradient Descent for Linear Regression

Batch Gradient Descent

Stochastic Gradient Descent: One example at a time

Mini-batch Gradient Descent: k examples at a time.

(Geron, 2017)

 Gradient Descent for Linear Regression

Batch Gradient Descent

Stochastic Gradient Descent: One example at a time

Mini-batch Gradient Descent: k examples at a time.

(Geron, 2017)

 Gradient Descent for Linear Regression

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow:
A System for Large-Scale Machine Learning. In OSDI (Vol. 16, pp. 265-283).

Spark Overview Distributed TensorFlow

Distributed:

● Locally: Across processors (cpus, gpus, tpus)
● Across a Cluster: Multiple machine with multiple processors

 Distributed TensorFlow

Distributed:

● Locally: Across processors (cpus, gpus, tpus)
● Across a Cluster: Multiple machine with multiple processors

Parallelisms:

● Data Parallelism: All nodes doing same thing on different subsets of data
● Graph/Model Parallelism: Different portions of model on different devices

 Distributed TensorFlow

Distributed:

● Locally: Across processors (cpus, gpus, tpus)
● Across a Cluster: Multiple machine with multiple processors

Parallelisms:

● Data Parallelism: All nodes doing same thing on different subsets of data
● Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

● Asynchronous Parameter Server
● Synchronous AllReduce (doesn’t work with Model Parallelism)

 Distributed TensorFlow

Distributed:

● Locally: Across processors (cpus, gpus, tpus)
● Across a Cluster: Multiple machine with multiple processors

Parallelisms:

● Data Parallelism: All nodes doing same thing on different subsets of data
● Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

● Asynchronous Parameter Server
● Synchronous AllReduce (doesn’t work with Model Parallelism)

 Distributed TensorFlow

discussed
previously

Multiple devices on single machine

CPU:0 CPU:1 GPU:0

Program 1 Program 2

 Local Distribution

Multiple devices on single machine

CPU:0 CPU:1 GPU:0

 Local Distribution

Multiple devices on multiple machines

Machine A
CPU:0 CPU:1

Machine B
GPU:0

 Local Distribution

Distributed:

● Locally: Across processors (cpus, gpus, tpus)
● Across a Cluster: Multiple machine with multiple processors

Parallelisms:

● Data Parallelism: All nodes doing same thing on different subsets of data
● Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

● Asynchronous Parameter Server
● Synchronous AllReduce (doesn’t work with Model Parallelism)

 Distributed TensorFlow

Distributed:

● Locally: Across processors (cpus, gpus, tpus)
● Across a Cluster: Multiple machine with multiple processors

Parallelisms:

● Data Parallelism: All nodes doing same thing on different subsets of data
● Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

● Asynchronous Parameter Server
● Synchronous AllReduce (doesn’t work with Model Parallelism)

 Distributed TensorFlow

Multiple devices on multiple machines

Machine A
CPU:0 CPU:1

Machine B
GPU:0

Transfer Tensors

 Parallelisms
Model Parallelism

CPU:0 CPU:1 GPU:0

 Parallelisms Data Parallelism

Distributed:

● Locally: Across processors (cpus, gpus, tpus)
● Across a Cluster: Multiple machine with multiple processors

Parallelisms:

● Data Parallelism: All nodes doing same thing on different subsets of data
● Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

● Asynchronous Parameter Server
● Synchronous AllReduce (doesn’t work with Model Parallelism)

 Distributed TensorFlow

Distributed:

● Locally: Across processors (cpus, gpus, tpus)
● Across a Cluster: Multiple machine with multiple processors

Parallelisms:

● Data Parallelism: All nodes doing same thing on different subsets of data
● Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

● Asynchronous Parameter Server
● Synchronous AllReduce (doesn’t work with Model Parallelism)

 Distributed TensorFlow

CPU:0 CPU:1 GPU:0CPU:0

Machine A Machine B(Geron, 2017: HOML: p.324)

TF Server TF Server TF Server

 “ps” “worker”
 task 0 task 0 task 1

Master

Worker

Master

Worker

Master

Worker

 Asynchronous Parameter Server

CPU:0 CPU:1 GPU:0CPU:0

Machine A Machine B(Geron, 2017: HOML: p.324)

TF Server TF Server TF Server

 “ps” “worker”
 task 0 task 0 task 1

Master

Worker

Master

Worker

Master

Worker

Parameter Server: Job is just to maintain
values of variables being optimized.

Workers: do all the numerical “work” and
send updates to the parameter server.

 Asynchronous Parameter Server

CPU:0 CPU:1 GPU:0CPU:0

Machine A Machine B(Geron, 2017: HOML: p.324)

TF Server TF Server TF Server

 “Worker” Worker Worker Worker

Master

Worker

Master

Worker

Master

Worker

Workers do computation, send parameter
updates to other workers, and store parameter
updates from other workers. Requires low
latency communication.

 Synchronous All Reduce

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow:
A System for Large-Scale Machine Learning. In OSDI (Vol. 16, pp. 265-283).

 Distributed TF: Full Pipeline

● TF is a workflow system, where records are always tensors
○ operations applied to tensors (as either Variables,

constants, or placeholder)
● Optimized for numerical / linear algebra

○ automatically finds gradients
○ custom kernels for given devices

● “Easily” distributes
○ Within a single machine (local: many devices))
○ Across a cluster (many machines and devices)
○ Jobs broken up as parameter servers / workers makes

coordination of data efficient

Spark Overview Summary

