CSE545 - Spring 2020 Stony Brook University

H. Andrew Schwartz

Big Data Analytics, The Class

Goal: Generalizations A model or summarization of the data.

Data Frameworks

Algorithms and Analyses

Hadoop File System S Streaming Spark

MapReduce

Tensorflow

Similarity Search Hypothesis Testing Graph Analysis Recommendation Systems

Deep Learning

Spark is fast for being so flexible

- Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.
- Flexible: Many transformations -- can contain any custom code.

Spark is fast for being so flexible

- Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.
- Flexible: Many transformations -- can contain any custom code.

However:

• Hadoop MapReduce can still be better for extreme IO, data that will not fit in memory across cluster.

Spark is fast for being so flexible

- Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.
- Flexible: Many transformations -- can contain any custom code.

However:

• Hadoop MapReduce can still be better for extreme IO, data that will not fit in memory across cluster.

Spark is fast for being so flexible

- Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.
- Flexible: Many transformations -- can contain any custom code.

However:

- Hadoop MapReduce can still be better for extreme IO, data that will not fit in memory across cluster.
- Modern machine learning (esp. Deep learning), a common big data task, requires heavy numeric computation.

Spark is fast for being so flexible

- Fast: RDDs in memory + Lazy evaluation: optimized chain of operations.
- Flexible: Many transformations -- can contain any custom code.

However:

- Hadoop MapReduce can still be better for extreme IO, data that will not fit in memory across cluster.
- Modern machine learning (esp. Deep learning), a common big data task, requires heavy numeric computation.

Learning Objectives

- Understand TensorFlow as a data workflow system.
 - Know the key components of TensorFlow.
 - Understand the key concepts of *distributed* TensorFlow.
- Execute basic distributed tensorflow program.
- Establish a foundation to distribute deep learning models:
 - Convolutional Neural Networks
 - Recurrent Neural Network (or LSTM, GRU)

What is TensorFlow?

A workflow system catered to numerical computation.

One view: Like Spark, but uses *tensors* instead of *RDDs*.

What is **<u>Tensor</u>**Flow?

A workflow system catered to numerical computation.

One view: Like Spark, but uses *tensors* instead of *RDDs*.

What is **<u>Tensor</u>**Flow?

A workflow system catered to numerical computation.

One view: Like Spark, but uses *tensors* instead of *RDDs*.

A 2-d tensor is just a matrix. 1-d: vector 0-d: a constant / scalar

Note: Linguistic ambiguity: Dimensions of a Tensor =/= Dimensions of a Matrix

(i.stack.imgur.com)

A workflow system catered to numerical computation.

One view: Like Spark, but uses *tensors* instead of *RDDs*.

Examples > 2-d : Image definitions in terms of RGB per pixel Image[*row*][*column*][*rgb*]

Subject, Verb, Object representation of language: Counts[verb][subject][object] A workflow system catered to numerical computation.

One view: Like Spark, but uses *tensors* instead of *RDDs*.

Technically, less abstract than *RDDs* which could hold tensors as well as many other data structures (dictionaries/HashMaps, Trees, ...etc...).

Then, why TensorFlow?

Efficient, high-level built-in **linear algebra** and **machine learning optimization** *operations* (i.e. transformations).

enables complex models, like deep learning

Then, why TensorFlow?

Efficient, high-level built-in **linear algebra** and **machine learning optimization** *operations*.

enables complex models, like deep learning

Efficient, high-level built-in **linear algebra** and **machine learning** *operations*.

```
import tensorflow as tf
```

```
b = tf.Variable(tf.zeros([100]))
                                                    # 100-d vector, init to zeroes
W = tf.Variable(tf.random_uniform([784,100],-1,1)) # 784x100 matrix w/rnd vals
x = tf.placeholder(name="x")
                                                    # Placeholder for input
relu = tf.nn.relu(tf.matmul(W, x) + b)
                                                    # Relu(Wx+b)
C = [...]
                                                    # Cost computed as a function
                                                    # of Relu
s = tf.Session()
for step in xrange(0, 10):
  input = ...construct 100-D input array ...
                                                    # Create 100-d vector for input
  result = s.run(C, feed_dict={x: input})
                                                    # Fetch cost, feeding x=input
  print step, result
```

(Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. *arXiv preprint arXiv:1603.04467*.)

Tensor**Flow**

Operations on tensors are often conceptualized as **graphs**:

```
import tensorflow as tf
```

```
b = tf.Variable(tf.zeros([100]))
W = tf.Variable(tf.random_uniform([784,100],-1,1))
x = tf.placeholder(name="x")
relu = tf.nn.relu(tf.matmul(W, x) + b)
C = [...]
s = tf.Session()
for step in xrange(0, 10):
    input = ...construct 100-D input array ...
    result = s.run(C, feed_dict={x: input})
    print step, result
```


(Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. *arXiv preprint arXiv:1603.04467*.)

Tensor**Flow**

Operations on tensors are often conceptualized as graphs:

A simpler example:

c = tensorflow.matmul(a, b)

Tensor**Flow**

Operations on tensors are often conceptualized as graphs:

example:

d=b+c e=c+2 a=d*e

(Adventures in Machine Learning. *Python TensorFlow Tutorial*, 2017)

tensors variables* - persistent mutable tensors *constants* - constant *placeholders* - from data

operations an abstract computation (e.g. matrix multiply, add) executed by device *kernels*

* technically, still operations

session defines the environment in which operations *run*. (like a Spark context)

devices

graph

the specific devices (cpus or gpus) on which to run the session.

tensors variables* - persistent mutable tensors *constants* - constant *placeholders* - from data

tf.Variable(initial_value, name)

- tf.constant(value, type, name)
- tf.placeholder(type, shape, name)

* technically, still operations

session defines the environment in which operations *run*. (like a Spark context)

devices

graph

the specific devices (cpus or gpus) on which to run the session.

tensors variables -* persistent mutable tensors *constants -* constant *placeholders -* from data

operations an abstract computation (e.g. matrix multiply, add) executed by device *kernels*

Category	Examples
Element-wise mathematical operations	Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal,
Array operations	Concat, Slice, Split, Constant, Rank, Shape, Shuffle,
Matrix operations	MatMul, MatrixInverse, MatrixDeterminant,
Stateful operations	Variable, Assign, AssignAdd,
Neural-net building blocks	SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool,
Checkpointing operations	Save, Restore
Queue and synchronization operations	Enqueue, Dequeue, MutexAcquire, MutexRelease,
Control flow operations	Merge, Switch, Enter, Leave, NextIteration

- Places operations on devices variables persistent
- Stores the values of variables (when not distributed)

graph

Carries out execution: eval() or run()

session

defines the environment in which operations *run*. (like a Spark context)

devices

the specific devices (cpus or gpus) on which to run the session.

tensors variables -* persistent mutable tensors *constants -* constant *placeholders -* from data

operations an abstract computation (e.g. matrix multiply, add) executed by device *kernels*

session defines the environment in which operations *run*. (like a <u>Spark context</u>)

devices

graph

the specific devices (cpus or gpus) on which to run the session.

Typical use-case: (Supervised Machine Learning) Determine weights, \mathcal{W} , of a function, *f*, such that ε is minimized: $f(X | \mathcal{W}) = \mathcal{Y} + \varepsilon$

Typical use-case:

Determine weights, \mathcal{W} , of a function, f, such that ε is minimized: $f(\mathcal{X} | \mathcal{W}) = \mathcal{Y} + \varepsilon$

Typical use-case:

Determine weights, \mathcal{W} , of a function, f, such that ε is minimized: $f(\mathcal{X} | \mathcal{W}) = \mathcal{Y} + \varepsilon$

Typical use-case:

Determine weights, \mathcal{W} , of a function, f, such that $\boldsymbol{\varepsilon}$ is minimized: $f(\mathcal{X} | \mathcal{W}) = \mathcal{Y} + \boldsymbol{\varepsilon}$

Typical use-case:

Determine weights, \mathcal{W}_{f} of a function, f, such that $|\varepsilon|$ is minimized:

 $f(X/W) = \hat{Y}$ $Y = (X/W) + \varepsilon$ $Y = \hat{Y} + \varepsilon$ $\varepsilon = \hat{Y} - Y$

Typical use-case:

Determine weights, \mathcal{W} , of a function, f, such that ε is minimized: $f = \hat{Y} + \varepsilon$

W determined through gradient descent:

back propagating error across the network that defines f.

 $f(X/W) = \hat{Y}$ $Y = (X/W) + \varepsilon$

 $\mathbf{\varepsilon} = \hat{Y} - Y$

Linear Regression: Trying to find "betas" that minimize:

$$\hat{\beta} = argmin_{\beta} \{\sum_{i}^{N} (y_i - \hat{y}_i)^2\}$$

Linear Regression: Trying to find "betas" that minimize:

$$\hat{\beta} = argmin_{\beta} \{\sum_{i}^{N} (y_{i} - \hat{y}_{i})^{2}\}$$

$$\hat{y}_{i} = X_{i} \hat{\beta} \quad \text{Thus:} \quad \hat{\beta} = argmin_{\beta} \{\sum_{i=0}^{N} (y_{i} - X_{i}\beta)^{2}\}$$

Linear Regression: Trying to find "betas" that minimize:

$$\hat{\beta} = argmin_{\beta} \{\sum_{i}^{N} (y_{i} - \hat{y}_{i})^{2} \}$$

$$\hat{y}_{i} = X_{i} \hat{\beta} \quad \text{Thus:} \quad \hat{\beta} = argmin_{\beta} \{\sum_{i=0}^{N} (y_{i} - X_{i}\beta)^{2} \}$$

In standard linear equation:

$$y = mx + b$$
 let $x' = x + [1, 1, ..., 1]_N^T$
then, $y = mx'$

800

(if we add a column of 1s, mx + b is just matmul(m, x))
Linear Regression: Trying to find "betas" that minimize:

Copyright 2014. Laerd Statistics.

Linear Regression: Trying to find "betas" that minimize:

$$\hat{\beta} = argmin_{\beta} \{\sum_{i}^{N} (y_{i} - \hat{y}_{i})^{2}\}$$
$$\hat{y}_{i} = X_{i}\beta \quad \text{Thus:} \quad \hat{\beta} = argmin_{\beta} \{\sum_{i=0}^{N} (y_{i} - X_{i}\beta)^{2}\}$$

How to update? $\beta_{new} = \beta_{prev} - \alpha * \text{grad}$

Linear Regression: Trying to find "betas" that minimize:

$$\hat{\beta} = \arg \min_{\beta} \{\sum_{i}^{N} (y_{i} - \hat{y}_{i})^{2}\}$$

$$\hat{y}_{i} = X_{i}\beta \quad \text{Thus:} \qquad \hat{\beta} = \arg \min_{\beta} \{\sum_{i=0}^{N} (y_{i} - X_{i}\beta)^{2}\}$$
How to update?
$$\beta_{new} = \beta_{prev} - \alpha * \operatorname{grad-}_{\text{(for gradient descent)}}$$
(for gradient descent) "learning rate"

Ridge Regression (L2 Penalized linear regression, $\lambda ||\beta||_2^2$)

$$\hat{\beta}^{ridge} = argmin_{\beta} \{\sum_{i=1}^{N} (y_i - \sum_{j=1}^{m} x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^{m} \beta_j^2 \}$$

1. Matrix Solution: $\hat{\beta}^{ridge} = (X^TX + \lambda I)^{-1}X^Ty$

Ridge Regression (L2 Penalized linear regression, $\lambda ||\beta||_2^2$)

$$\hat{\beta}^{ridge} = argmin_{\beta} \{ \sum_{i=1}^{N} (y_i - \sum_{j=1}^{m} x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^{m} \beta_j^2 \}$$

2. Gradient descent solution (Mirrors many parameter optimization problems.)

1.

Matrix Solution:
$$\hat{\beta}^{ridge} = (X^TX + \lambda I)^{-1}X^Ty$$

Ridge Regression (L2 Penalized linear regression, $\lambda ||\beta||_2^2$)

TensorFlow has built-in ability to derive gradients given a cost function

Ridge Regression (L2 Penalized linear regression, $\lambda ||\beta||_2^2$)

$$\hat{\beta}^{ridge} = \arg \min_{\beta} \{ \sum_{i=1}^{N} (y_i - \sum_{j=1}^{m} x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^{m} \beta_j^2 \}$$
Gradient descent needs to solve.
(Mirrors many parameter optimization problems.)

TensorFlow has built-in ability to derive gradients given a cost function.

tf.gradients(cost, [params])

TensorFlow has built-in ability to derive gradients given a cost function.

tf.gradients(cost, [params])

- 1. Distribute copies of entire dataset
 - a. Train over all with different hyperparameters
 - b. Train different folds per worker node.

1. Distribute copies of entire dataset

- a. Train over all with different parameters
- b. Train different folds per worker node.

2. Distribute data

- a. Each node finds parameters for subset of data
- b. Needs mechanism for updating parameters
 - i. Centralized parameter server
 - ii. Distributed All-Reduce

1. Distribute copies of entire dataset

- a. Train over all with different parameters
- b. Train different folds per worker node.

2. Distribute data

- a. Each node finds parameters for subset of data
- b. Needs mechanism for updating parameters
 - i. Centralized parameter server
 - ii. Distributed All-Reduce

3. Distribute model or individual operations (e.g. matrix multiply)

1. Distribute copies of entire dataset

- a. Train over all with different parameters
- b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data

- a. Each node finds parameters for subset of data
- b. Needs mechanism for updating parameters
 - i. Centralized parameter server
 - ii. Distributed All-Reduce

Pro: Flexible to all situations;

Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring Intermediar data.

Done often in practice. Not talked about much because it's mostly as easy as it sounds.

- 1. Distribute copies of entire dataset
 - a. Train over all with different parameters
 - b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data

- a. Each node finds parameters for subset of data
- b. Needs mechanism for updating parameters
 - i. Centralized parameter server
 - ii. Distributed All-Reduce

Pro: Flexible to all situations;

Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring Intermediar data.

Done often in practice. Not talked about much because it's mostly as easy as it sounds.

- 1. Distribute copies of entire dataset
 - a. Train over all with different parameters
 - b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data

a. Each node finds parameters for subset of data

- b. Needs mechanism for updating parameters
 - i. Centralized parameter server
 - ii. Distributed All-Reduce

Preferred method for big data or very complex models (i.e. models with many internal parameters).

Pro: Flexible to all situations;

Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized

Con: High communication for transferring Intermediar data.

Done often in practice. Not talked about much because it's mostly as easy as it sounds.

- 1. Distribute copies of entire dataset
 - a. Train over all with different parameters
 - b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

Pro: Flexible to all situations;

Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: PaModel Parellelismed

Con: High communication for transferring Intermediar data.

Multiple devices on multiple machines

Data Parallelism

Data Parallelism

learn parameters (i.e. weights), given graph with cost function and *optimizer*

update params of each node and repeat

Gradient Descent for Linear Regression

Gradient Descent for Linear Regression

Batch Gradient Descent

Stochastic Gradient Descent: One example at a time

Mini-batch Gradient Descent: k examples at a time.

W

Gradient Descent for Linear Regression

(Geron, 2017)

Batch Gradient Descent

Stochastic Gradient Descent: One example at a time

Mini-batch Gradient Descent: k examples at a time.

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow: A System for Large-Scale Machine Learning. In *OSDI* (Vol. 16, pp. 265-283).

Batches/second

Distributed:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors

Distributed:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors

Parallelisms:

- Data Parallelism: All nodes doing same thing on different subsets of data
- Graph/Model Parallelism: Different portions of model on different devices

Distributed:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors

Parallelisms:

- Data Parallelism: All nodes doing same thing on different subsets of data
- Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

- Asynchronous Parameter Server
- Synchronous AllReduce (doesn't work with Model Parallelism)

Distributed:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors

Parallelisms:

- Data Parallelism: All nodes doing same thing on different subsets of data
- Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

- Asynchronous Parameter Server
- Synchronous AllReduce (doesn't work with Model Parallelism)

Local Distribution

Multiple devices on single machine

Multiple devices on single machine

Multiple devices on multiple machines

Distributed:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors

Parallelisms:

- Data Parallelism: All nodes doing same thing on different subsets of data
- Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

- Asynchronous Parameter Server
- Synchronous AllReduce (doesn't work with Model Parallelism)

Distributed:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors

Parallelisms:

- Data Parallelism: All nodes doing same thing on different subsets of data
- Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

- Asynchronous Parameter Server
- Synchronous AllReduce (doesn't work with Model Parallelism)
Multiple devices on multiple machines

Distributed TensorFlow

Distributed:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors

Parallelisms:

- Data Parallelism: All nodes doing same thing on different subsets of data
- Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

- Asynchronous Parameter Server
- Synchronous AllReduce (doesn't work with Model Parallelism)

Distributed TensorFlow

Distributed:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors

Parallelisms:

- Data Parallelism: All nodes doing same thing on different subsets of data
- Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

- Asynchronous Parameter Server
- Synchronous AllReduce (doesn't work with Model Parallelism)

Asynchronous Parameter Server

Asynchronous Parameter Server

Synchronous All Reduce

Distributed TF: Full Pipeline

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow: A System for Large-Scale Machine Learning. In *OSDI* (Vol. 16, pp. 265-283).

Summary

- TF is a workflow system, where records are always tensors
 operations applied to tensors (as either Variables, constants, or placeholder)
- Optimized for numerical / linear algebra
 - automatically finds gradients
 - \circ $\,$ custom kernels for given devices
- "Easily" distributes
 - Within a single machine (local: many devices))
 - Across a cluster (many machines and devices)
 - Jobs broken up as parameter servers / workers makes coordination of data efficient